

MGV ENTERPRISES L.L.C. Innovative Materials and Technologies in Molding and Casting IntelliMold Systems

www.mgventerprises.com

4651 Platt Ln. Ann Arbor, MI 48108 Phone: (734) 477-9344 Fax: (734) 477-9345

www.intellimold.com

o intellimold

IntelliMold Systems OEM Integration: ENGEL

Revision Level: Release Document Number: 7.5.1.0.30.004.001

The following information is for reference only. It is subject to change and may not be identical on all types of Engel.

The following information has been gathered to help in start-up, set-up and troubleshooting any problems that have to do with the successful operation of the IntelliMold System on a Engel Injection Molding Machine.

www.mgventerprises.com

ACTV E

IntelliMold Systems 4651 Platt Ln. Ann Arbor, MI 48108 Phone: (734) 477-9344 Fax: (734) 477-9345

Innovative Materials and Technologies in Molding and Casting

www.intellimold.com

intellimolo

What is IntelliMoldTM?

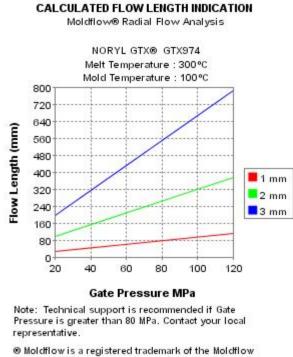
IntelliMoldTM is a unique process control method that provides measurements and control of pressure transition throughout the cavity in real time. This is achieved by generating a new process parameter called internal melt pressure, IMP. IMP is generated from real-time measurements, every 2 milliseconds, from a transducer in the nozzle extension and at the last place to fill in the cavity. The real-time value of the IMP is compared with the operator-entered set point and the hydraulics are manipulated in a manner to bring the actual value to the set point. The IMP replaces the need for boost, pack and hold profiles.

In addition to the 2 pressure transducers, the cavity is also charged with 200 psi of air prior to the start of injection. We provide an air amplifier that will boost normal plant air between 50-150 psi to the specified 200 psi. The primary purpose for this is to give the transducers a known start point prior to the start of injection. An additional advantage of this pressure within the cavity is that it helps make the material more dense as it fills the cavity. Using this in conjunction with the material based control of injection provides parts with a more even density throughout the part. With this method and process control, each section of an injection molded part solidifies in an equal, pressure-balanced and stress free environment.

"You can't control that which you can't measure; yet, that is what we, the molders, have been trying to do for many years." - Milko Guergov

The following screen is the main IntelliMold[™] Screen. This screen contains the majority of processing set points. This screen also contains the actual and peak values used for process feedback.

I	NTELLIMOL	D) CL.L.C(DNT- I	MP vs	2005 01	17 11 52 YES
-	MP PRESSUR 90001 90001	9000	9000 9000	P7G-1 900 900		(psi) 9000_ 9000_
I I I I		NJECT.PRI		E Z2= [= \$\$×=] s ∐ Bin∕s
P P	ROCESS FAC	CTOR A CTOR B			1.0000 9.0000	
CONTRACTOR OF CONT		PFx = 41 PMx = 4	Peak Peak	A.PFs = A.PMs = 5	100 psi 849 psi	
		Delay times	Active tim	ies		
1.(2.([0	JECTION SWITCHOVER	ve 0.0 s 🔟	4.0 s C 0.0 s C Relief val 3 3 INTELL IML PROCESS		Valve 3	<u>D0 63</u>
v u	CONTROL / Intelli When the system is er using IMP (<i>Internal M</i>) he machine will ignor	nabled (YES), all o <i>Melt Pressure</i>) as t	of the IntelliN he control var	Iold [™] set poi riable. When	nts become the system	active is disabled
	This screen gives the a egment is the preferre					

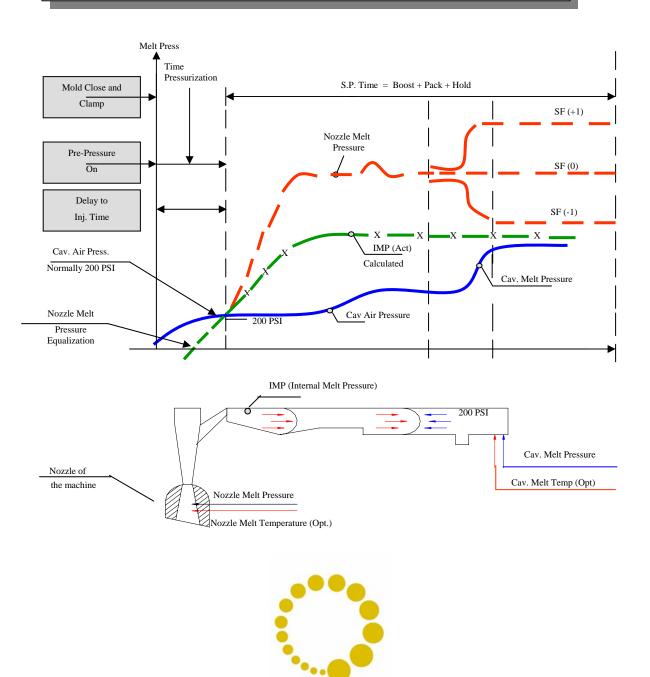


(Fast Injection Speed: resulting profile from previous screen)

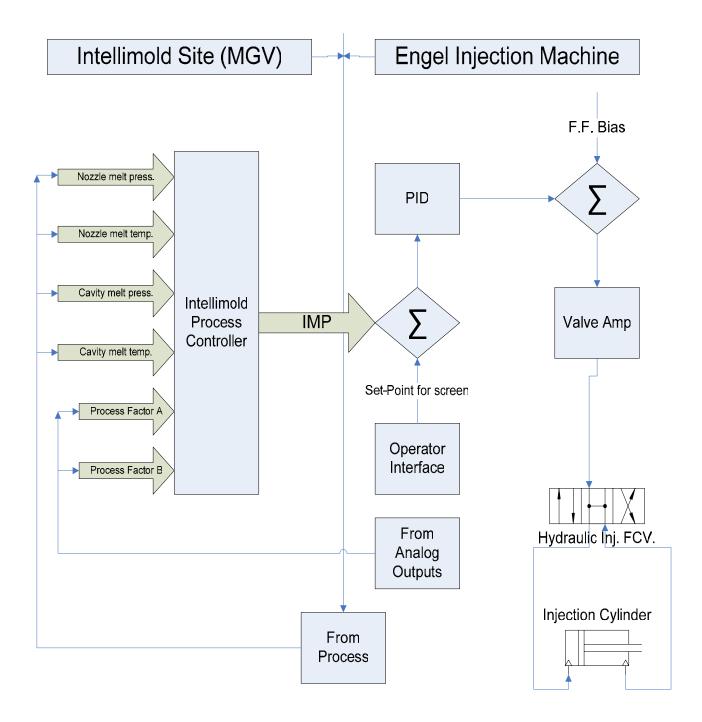
Processing

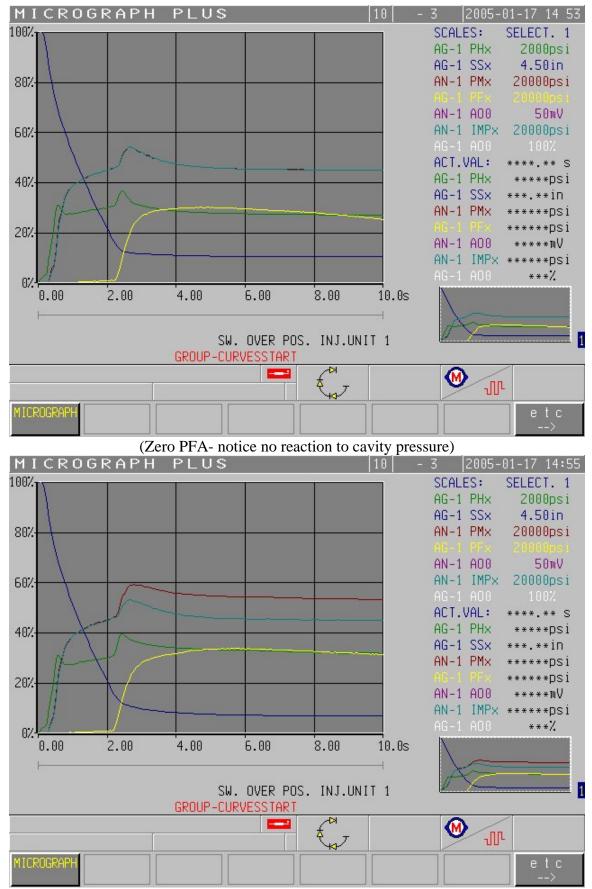
Parameter		
Injection Molding	Value	Unit
Drying Temperature	100 - 120	°C
Drying Time	2 - 3	hrs
Maximum Moisture Content	0.02	%
Melt Temperature	290 - 320	°C
Nozzle Temperature	280 - 310	°C
Front - Zone 3 Temperature	290 - 320	°C
Middle - Zone 2 Temperature	280 - 300	°C
Rear - Zone 1 Temperature	260 - 280	°C
Hopper Temperature	60 - 80	°C
Mold Temperature	80 - 120	°C

Source GMD, last updated:03/23/2004

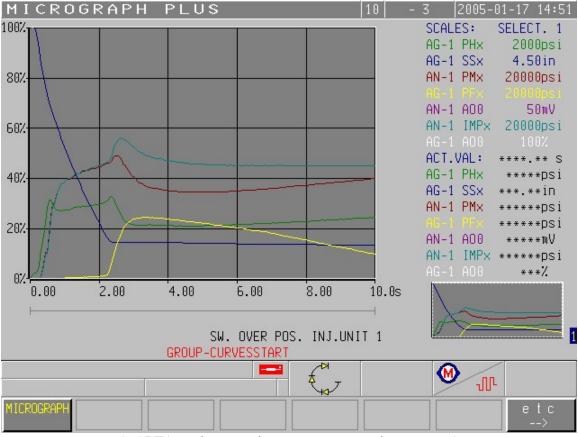


Corporation.


The above table and graph shows an example of material processing recommendations from a material supplier.


	INTELLIMOLD 4 - 3 2005-01-17 11 52 INTELLIMOLD CL.L.CONT- IMP vs TIME YES
_	IMP PRESSURE PROFILE: P7G-P16G (psi) 9000_ 9000_ 9000_ 9000_ 9000_ 9000_ 9000_ 9000_ 9000_ 9000_ 9000_ 9000_ 9000_ 9000_ 9000_ 9000_ 9000_ IMP INJECTION PRESSURE LIMIT 2000_ psi
	IMP POST INJECT.PRES.TIME Z2= 10.0 s IMP SPEED - Z.8in/s
Ē	SCREW POSITION SSx= 4.65 in IMP FEEDBACK 64psi PROCESS FACTOR A -1.0000 PROCESS FACTOR B 0.0000 1.Cavity pressure PFx = 41 Peak A.PFs = 100 psi
	Melt pressure PMx = 4 Peak A.PMs = 5849 psi
	Delay times Active times IMP post inject.pressure 0.0 s 1.Gas counterpres.valve 0.0 s 4.0 s D0 61 2.Gas counterpres.valve 0.0 s 0.0 s D0 62 Relief valve - Valve 3 D0 63 [0 2494] Image: Comparison of the second sec
14	IntelliMold Injection Time, used to specify the amount of time used during injection.
	Process Factor A and B are user entered setpoints of the IntelliMold TM System. Process Factor A (PFA) is a setpoint that affects how the nozzle pressure reacts to the introduction of cavity pressure with a range of -1.00 to $+1.00$. Process Factor B (PFB) has been installed in the software to incorporate future enhancement. PFB should remain zero.)

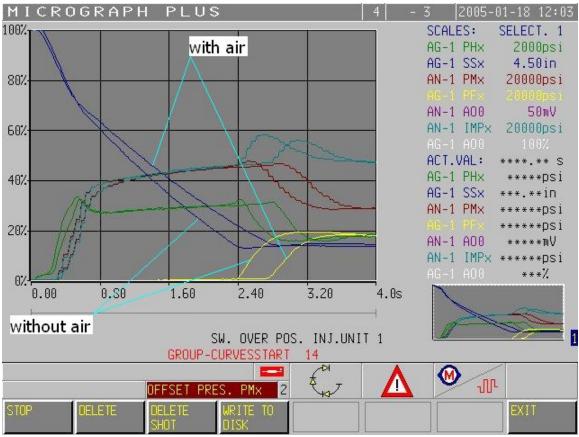
The following graphic depicts how PFA affects the IntelliMoldTM process. The blue line represents cavity pressure; the red line represents nozzle pressure; the green line represents calculated Internal Melt Pressure (IMP). Notice that there are three separate scenarios for nozzle pressure. With PFA at -1, nozzle pressure is reduced when the cavity is introduced. With PFA at 0 there is no change in nozzle pressure. With PFA at +1 nozzle pressure is increased.



PROCESS FACTOR A:B

(+.25 PFA-notice pressure applied to nozzle signal responding to cavity press)

(-.5 PFA-notice negative response to cavity pressure)


Preceding three graphs depict the various ways of Process Factor manipulation to directly affect the machine hydraulic pressure in reaction to the cavity pressure during a molding cycle.

	D DCL.L.C IRE PROFI 90001 90001		IMP VS P7G J 90	22	1-18 10:25 YES 9000 9000
IMP SPEED SCREW POSI IMP FEEDBA	NJECT.PR	SURE I	_IMIT 1E 22= = 33x=	~ ~	US⊿ 8in∕s 0in 2 <mark>psi</mark>
PROCESS FR 1.Cavity pressure Melt pressure Cavity temperature Melt temperature	PFx = 0 PMx = 0 TCx = 948.2 TMx = 36.5 Bolay times	Peak Peak Peak Peak Active t	A.PFs = A.PMs = A.TCs = A.TMs = imcc	0 psi 0 psi 32.0 °F 32.0 °F	G
IMP post inject.pre: 1.Gas counterpres.v. 2.Gas counterpres.v. [0 1] INJECTION SWITCHOVER TVPE	alve <u>0.0</u> s 🔟	0.0 s Relief v	Alve	Valve 3	DO 63
This section of the N Cavity Pressure, Me Temperature (if ava	lt Pressure, Cavity	-	•		tes for
The process timer see pneumatic panel are time for MP1 (Valv as for MP2 (Valve) appears to the right energized. There ar on the screen is the	energized. There e 1) occurs when to 2). All timers start of the set point is he e three solenoids he	is a delay tin the delay time at final inject nighlighted wo ocated on the	ne and an ac e for MP1 (ction permiss when the sole e pneumatic	tive time. The Valve 1) expinition. The box moid is actual unit, the one p	e active res, as well x that lly not shown

IMP Speed (IntelliMoldTM Velocity Control) is used to limit the velocity of the injection unit while IntelliMoldTM is enabled.

pneumatic unit and the mold after injection. Injection Delay is provided in the event

that additional time is needed to charge the cavity.

(Consecutive shots: One with air counter-pressure and one without counter-pressure)

The above screen shot depicts two cycles taken to show the difference between molding with the air counter pressure and without the counter pressure in the system. The difference in the two methods is clearly outlined by looking at the difference in the yellow lines (cavity pressure). The difference can also be seen in the actual shot size (dark blue line). The shot is faster without air counter pressure, which accounts for the increased speed of injection, showing internal melt pressure compensation within the control algorithms. This reaction gives Intellimold the ability to allow for product and process improvements depicted below.

Product Improvements	Process Improvements
Improved repeatability	Reduced cycle times
Higher surface quality	Real-time process control
Reduced warping, shrink and sinks	Error proofing
Stronger knit lines	Reduced scrap and re-work
Consistent part density	
Reduced internal stress	
Consistent weight	
Improved design flexibility	

PLASTICIZING	4 - 3 2005-01-1	17 11 55
METERING STROKE	C1 = 4.00	in 📕
PLASTICIZING SPEED: 7		30 []
SCREW ROTATION SPEED MAX		∕min
SCREW ROTATION SPEED	D Z × = 0	/min
BACK PRESSURE PEAK VAL.	P\$\$= 32	psi
B <u>ACK P</u> RES <u>SURE:</u> (psi)		psi
30 30 30 30	30	30 🗆
PLASTICIZING MONITORING	NO	
M I N = 0.0 MAX = 0.0		s
LAST CYCLE	ZDs= <u>9.2</u>	s
PLASTICIZING DELAY TIME		s 🗆
DECOMP.STROKE BEF.PLAST. DECOMP.STROKE AFT.PLAST.		in 📕 in
		in 📕
SCREW RETRACTION SPEED	V24= 75	% 🗆
SCREW POSITION ACT. VAL.	SSX = 4.65	in
[0.00 9.74] 💶 🖓	A nn	1. 1.
REJECT-GRAPHIC 1 3		12
PLASTICIZ- SET VALUE		
ING GRAPHICS		
+ The following screen is a conventional screen. Not al	ll of the required set points	s are

The following screen is a conventional screen. Not all of the required set points are done from an IntelliMoldTM Screen. Some very common parameters still need to be inputted from their Conventional Screens. Shot Size, Cooling Time, Decompress, etc.

IMP - CONTROL PARAM	ETERS 4 - 3 200)5-01-17 11:56
IMP POST INJECTION PRESSURE:		
kr tn tv umin umax	ks	
(s) (s) (mV) (mV)		
11 0.960 0.082 - 6500 10000	0.000	
INTELETHOED STONIE		
HYDRAUL.PRESSURE:	A10 -	<mark>0</mark> m V
SCREW POSITION:	A11 -	<mark>0</mark> m V
SCREW SPEED:	A12 -	<mark>0</mark> mŲ
SCREW STEED.	HIZ	01110
INPUT INTERLOCK		10 N N
REJECT-GRAPHIC 1	╡ { ፝ ≱ │ ∧ │ ╶╢	
INJECTION SWITCHOVER SET VALUE		
TYPE GRAPHICS	PROCESS PARAMETERS	
The above screen is used to adjust the Kr ,		
typically know as PID are used tune the IN		
Kr is the product of the proportional facto		
and the last measured actual value. Tn is	the product of the integral fact	or and the sum of

and the last measured actual value. **Tn** is the product of the integral factor and the sum of all previous set value/actual value differences. **Tv** is the product of the differential factor and the value of the difference between the set values and the actual values of the current measurement the last measurement. **Umin** is set at minimum value limit, and **Umax** at maximum value limit.

The tuning information is only for general reference. The tuning values for each machine will be established by an Intellimold representative upon installation of the system. Adjustments to these tuning parameters should only be made by qualified personnel.

CROSS REFERENCE.

Kr = P (Closed Loop)Tn = ITv = DKs = P (Open Loop)

SWITCHOVER MOD	E			4 -	3 2005	-01-17 11 58
stroke-dependent						YES
Position	SSx	=	4.65	Set	C3 =	0.00 in 🔟
				Act	C3u =	0.00 in 🗍
Start-up switchover position					C3a = 🗌	0.00 in 🔟
time-dependent						NO
Injection time	ZSx	=	0.00	Set	Z1 =	0.00 s 📕
hydraulic pressure-dependent	DU			<u> </u>	DU	NO
Peak	PVs		0	Set	PH =	0 psi
Hydraulic pressure	PHx	=	0	Act	PHu =	0 psi
				Range	C3b =	0.00 in 🔟
as a function of mold cavity			1000 Sec. 100	Cat	DE	NO
Peak	PFs		100	Set	PF =	0 psi
Mold cavity pressure	PFx	=	52	Act	PFu =	0 psi
melt pressure-dependent	DMe	11	F040	Cat	PM =	NO No seill
Peak Malt processo	PMs PMx		5849	Set Act	PM = PMu =	0 psi_ O psi
Melt pressure via external signal	FIIX	5	1	HUI	rnu =	0 psi NO 🔟
parallel					-	NO
Range					C3d =	0.00 in 🔟
[01]					23 12 22 23	
REJECT-GR	RAPHIC	0 1	3 2,7			
INJECTION SWITCHOVER SET VALUE TVPE GRAPHICS			INTELL IM PROCESS	LD INTELL IM PARAMETER	Contract in	

The above screen is used select type of transfer. There are four different types of transfer, Screw Stroke Dependent (Position), Time Dependent, Hydraulic Pressure Dependent, and Cavity Pressure Dependent. When utilizing Intellimold[™] Time Dependent should be the only transfer mode selected. All others should remain in the "NO" mode. The Time entered value needs to be 0.00 (zero). This will allow Intellimold to use value entered on the Main GCP screen. See page 4.

Revision History

Revision	Description	Revision Date
Rel.	Document Released	1/9/02
.001	Screens Changed by Scott Cameron + Dave Wills	1/18/05